628 research outputs found

    Superconducting Order Parameter in Bi-Layer Cuprates: Occurrence of π\pi Phase Shifts in Corner Junctions

    Full text link
    We study the order parameter symmetry in bi-layer cuprates such as YBaCuO, where interesting π\pi phase shifts have been observed in Josephson junctions. Taking models which represent the measured spin fluctuation spectra of this cuprate, as well as more general models of Coulomb correlation effects, we classify the allowed symmetries and determine their associated physical properties. π\pi phase shifts are shown to be a general consequence of repulsive interactions, independent of whether a magnetic mechanism is operative. While it is known to occur in d-states, this behavior can also be associated with (orthorhombic) s-symmetry when the two sub-band gaps have opposite phase. Implications for the magnitude of TcT_c are discussed.Comment: 5 pages, RevTeX 3.0, 9 figures (available upon request

    Differential rotation of nonlinear r-modes

    Full text link
    Differential rotation of r-modes is investigated within the nonlinear theory up to second order in the mode amplitude in the case of a slowly-rotating, Newtonian, barotropic, perfect-fluid star. We find a nonlinear extension of the linear r-mode, which represents differential rotation that produces large scale drifts of fluid elements along stellar latitudes. This solution includes a piece induced by first-order quantities and another one which is a pure second-order effect. Since the latter is stratified on cylinders, it cannot cancel differential rotation induced by first-order quantities, which is not stratified on cylinders. It is shown that, unlikely the situation in the linearized theory, r-modes do not preserve vorticity of fluid elements at second-order. It is also shown that the physical angular momentum and energy of the perturbation are, in general, different from the corresponding canonical quantities.Comment: 9 pages, revtex4; section III revised, comments added in Introduction and Conclusions, references updated; to appear in Phys. Rev.

    Connectivity clues from short-term variability in settlement and geochemical tags of mytilid mussels

    Get PDF
    The use of geochemical tags in calcified structures of fish and invertebrates is an exciting tool for investigating larval population connectivity. Tag evaluation over relatively short intervals (weeks) may detect environmental and ecological variability at a temporal scale highly relevant to larval transport and settlement. We collected newly settled mussels (Mytilus californianus and M. galloprovincialis) weekly during winter/spring of 2002 along the coast of San Diego, CA, USA, at sites on the exposed coast (SIO) and in a protected coastal bay (HI), to investigate temporal patterns of geochemical tags in mussel shells. Analyses of post-settlement shell via LA-ICP-MS revealed statistically significant temporal variability for all elements we examined (Mg, Mn, Cu, Sr, Cd, Ba, Pb and U). Despite this, our ability to distinguish multielemental signatures between sites was largely conserved. Throughout our 13-week study, SIO and HI mussels could be chemically distinguished from one another in 78-87% of all cases. Settlement varied between 2 and 27 settlers gram-byssus-1week-1 at SIO and HI, and both sites were characterized by 2-3weeks with "high" settlement. Geochemical tags recorded in early larval shell of newly settled mussels differed between "high" and "low" settlement weeks at both sites (MANOVA), driven by Mg and Sr at SIO (p=0.013) and Sr, Cd, Ba and Pb at HI (p<0.001). These data imply that shifts in larval sources or transport corridors were responsible for observed settlement variation, rather than increased larval production. In particular, increased settlement at HI was observed concurrent with the appearance of geochemical tags (e.g., elevated Cd), suggesting that those larvae were retained in upwelled water near the mouth of the bay. Such shifts may reflect short-term changes in connectivity among sites due to altered transport corridors, and influence the demography of local populations

    The r-modes in accreting neutron stars with magneto-viscous boundary layers

    Full text link
    We explore the dynamics of the r-modes in accreting neutron stars in two ways. First, we explore how dissipation in the magneto-viscous boundary layer (MVBL) at the crust-core interface governs the damping of r-mode perturbations in the fluid interior. Two models are considered: one assuming an ordinary-fluid interior, the other taking the core to consist of superfluid neutrons, type II superconducting protons, and normal electrons. We show, within our approximations, that no solution to the magnetohydrodynamic equations exists in the superfluid model when both the neutron and proton vortices are pinned. However, if just one species of vortex is pinned, we can find solutions. When the neutron vortices are pinned and the proton vortices are unpinned there is much more dissipation than in the ordinary-fluid model, unless the pinning is weak. When the proton vortices are pinned and the neutron vortices are unpinned the dissipation is comparable or slightly less than that for the ordinary-fluid model, even when the pinning is strong. We also find in the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8 K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to counteract the magnetic effects. Second, we evolve our two models in time, accounting for accretion, and explore how the magnetic field strength, the r-mode saturation amplitude, and the accretion rate affect the cyclic evolution of these stars. If the r-modes control the spin cycles of accreting neutron stars we find that magnetic fields can affect the clustering of the spin frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a referenc

    Global Production Increased by Spatial Heterogeneity in a Population Dynamics Model

    Get PDF
    Spatial and temporal heterogeneity are often described as important factors having a strong impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response of biotic interactions such as competition of predation. It may also modify intrinsic population properties such as growth rate. Most of the studies are theoretic since it is often difficult to manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which can explain why spatial heterogeneity may be a favorable factor for production.We consider a two patch model and a logistic growth is assumed on each patch. A general condition on the migration rates and the local subpopulation growth rates is provided under which the total carrying capacity is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this result is robust under stochastic perturbations

    Nonlinear r-Modes in Neutron Stars: Instability of an unstable mode

    Get PDF
    We study the dynamical evolution of a large amplitude r-mode by numerical simulations. R-modes in neutron stars are unstable growing modes, driven by gravitational radiation reaction. In these simulations, r-modes of amplitude unity or above are destroyed by a catastrophic decay: A large amplitude r-mode gradually leaks energy into other fluid modes, which in turn act nonlinearly with the r-mode, leading to the onset of the rapid decay. As a result the r-mode suddenly breaks down into a differentially rotating configuration. The catastrophic decay does not appear to be related to shock waves at the star's surface. The limit it imposes on the r-mode amplitude is significantly smaller than that suggested by previous fully nonlinear numerical simulations.Comment: Published in Phys. Rev. D Rapid Comm. 66, 041303(R) (2002

    Proof of a conjecture of Polya on the zeros of successive derivatives of real entire functions

    Full text link
    We prove Polya's conjecture of 1943: For a real entire function of order greater than 2, with finitely many non-real zeros, the number of non-real zeros of the n-th derivative tends to infinity with n. We use the saddle point method and potential theory, combined with the theory of analytic functions with positive imaginary part in the upper half-plane.Comment: 26 page

    Theory of Neutron Scattering in the Normal and Superconducting State of YBCO

    Full text link
    We analyze neutron experiments on \ybco at various stoichiometries in the superconducting state, within the context of a bi-layer theory which yields good agreement with the normal state Cu-NMR and neutron data as a function of \omega, q and T. A d-wave superconducting state exhibits peaks at q = ( \pi , \pi , \pi ) and sharp maxima as a function of \omega, at twice the gap frequency. This behavior may have been observed experimentally. The counterpart behavior for other choices of order parameter symmetry is discussed.Comment: uuencoded postscript file for the entire paper enclose

    Stochastic Resonance in Ion Channels Characterized by Information Theory

    Full text link
    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau-information, the mutual information and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.Comment: 10 pages, 2 figures, to appear in Phys. Rev.

    Gravitational waves from rapidly rotating neutron stars

    Full text link
    Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed as an interesting source of gravitational waves. In this chapter we present estimates of the gravitational wave emission for various scenarios, given the (electromagnetically) observed characteristics of these systems. First of all we focus on the r-mode instability and show that a 'minimal' neutron star model (which does not incorporate exotica in the core, dynamically important magnetic fields or superfluid degrees of freedom), is not consistent with observations. We then present estimates of both thermally induced and magnetically sustained mountains in the crust. In general magnetic mountains are likely to be detectable only if the buried magnetic field of the star is of the order of B≈1012B\approx 10^{12} G. In the thermal mountain case we find that gravitational wave emission from persistent systems may be detected by ground based interferometers. Finally we re-asses the idea that gravitational wave emission may be balancing the accretion torque in these systems, and show that in most cases the disc/magnetosphere interaction can account for the observed spin periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert
    • 

    corecore